User’s Manual for Version 1.1 of the
NIST DME Interface Test Suite for Facilitating Implementations of
Version 1.1 of the 1++ DME Interface Specification

John Horst, Thomas Kramer, Joseph Falco, Keith Stouffer,
Hui-Min Huang, Cathy Liu, Frederick Proctor, and Albert Wavering
The Nationa Institute of Standards and Technology (NIST)

U. S. Department of Commerce
Gaithersburg, Maryland, USA
Telephone: 301.975.{ 3430, 3518, 3455, 3877, 3427, 3434, 3425, 3461}
Email: {john.horst, thomas.kramer, joseph.falco, keith.stouffer, hui-min.huang,
cathy.liu, frederick.proctor, albert.wavering} @nist.gov

May 9, 2003

"In software development, testing should occur:
1. Atthebeginning
2. Inthemiddle
3. Onthose who think testing should occur only at the end"”

—a poster advertisement for Rational Software Corporation

Contents

Version information

Quick startup instructions: Getting started with the client-side and server-side utilities and test cases

2.1 Downloading and unpackingthetestsuite
2.2 Running the server-side and client-side utilities
23 Usingthetest Cases o o i e

Platform requirements

How to get the most out of the entire test suite

4.1 Using the executablesto facilitate implementationdevelopment
4.2 Using software modules to facilitate implementation development oL oL
4.3 Usingthetest suitetoimprovethe specification

Using the test suite for conformance and interoperability testing

Introducing the components of the test suite

6.1 Thetwo sets of components within the test suite: client-side components and server-side components
6.2 Stand-alone components versus stripped-down components L s e e
6.3 Whoto contact for aparticular test suitecomponent

Using the client-side components for facilitating server-side implementations
7.1 Operatingthe GUIfrontend
7.2 Usingthe TCP/IPsocket read andwritecode o
7.3 Usingthelogfilegenerationcode
74 Usingthecommand stringtestfiles.
741 Formatof command Strings e
742 Format of command stringtestfiles
75 UsingtheLegotestartifact
7.5.1 How to purchase, assemble, and provide CAD support for theLego artifact
7.5.2 How to set up the Lego artifact: definition of part origin and axis orientation
75.3 Reasonsfor the particular choice of partsonthelLegoartifact
7.5.4 Argumentsfor (and against) usingtheLegoartifact
7.6 Usingtheresponseparser CoOe o o o e e
7.6.1 Using the response parser as stand-alone support for server-sideimplementations
7.6.2 Integrating the response parser in aclient-sideimplementation
7.6.3 Format of responsestrings o o e e e e e
7.6.4 Formatof responsestringtestfiles e

Using server-side components for facilitating client-side implementations

8.1 Operatingtheserver-sideGUI frontend e
8.2 Server-sideUtility e e
83 TCP/IPsocketreadandwrite e e e
8.4 Usingthecommand String Parser o o o i e e
85 CMM andtoolsrelated cOmponents e e e e e
8.6 Commandcontextchecker
8.7 Command executor (CMM simulator) e e e e e
88 Commandandresponse C++ ClaSsSES o o v i o e e e

HhOWW

List of Figures

1 Directory structurefor the NIST test suiteversion L1 0o e e e 4
2 |++ DME Interface Specification Testing and Implementation Systems 7
3 Thedclient-sideGUIfrontend e 11
4 Thelegoartifact: viewpoint #1 e e e 18
5 Thelegoartifact: viewpoint#2 e e 19
6 Theserver-sideGUI frontend e e 26
7 UML diagramfor I++responseclasseS. o o o o e 31
8 UMLdiagramforl++command classes e 32
List of Tables
1 Alistof al the client-side components along with a brief description of what each does and whereitislocated . . . 8
2 Alistof dl the server-side components along with a brief description of what each does and whereiit islocated. . . 9
3 Alist of thetest suite components and the individualsresponsibleforthem 10
4 Alistof al thecommand string test filesby typeoftest L 12

1 Version information

This user’'s manual describes version 1.1 of the NIST Dimensional Measuring Equipment (DME) interface test suite intended to
support implementations of version 1.1 of the I++ DME specification. This and other versions of the I++ DME specification are
located at the following web site.

http://ww.isd. mel.nist.gov/projects/ nmetrol ogy_interoperability/specs/index.htm

2 Quick startup instructions: Getting started with the client-side and server-side
utilities and test cases

The following instructions are for those devel opers who want to immediately start using the NIST test utilities and test cases. This
includes those who are writing their own code from scratch and do not intend to use any of the code provided by NIST in their
implementations.

2.1 Downloading and unpacking the test suite

A zip file, containing all the source code, executables, and additional files pertaining to the test suite, can be downloaded from the
following link:

http://ww.isd. mel.nist.gov/projects/ metrol ogy_i nteroperability/resources. htmn

Thezipfile, NISTutilitiesVerl.1ForlppVerl.1.zip, containsadirectory called NISTI++DMEtestSuitel.1. Thehighlevel directory
structure of the file when it is unzipped is shown in Figure 1.

2.2 Running the server-side and client-side utilities

The server-side and client-side utilities are located here:

NI STI ++DMVEt est Suitel. 1\testSuiteUtilities\client. exe
NI STI ++DVEt est Sui tel. 1\testSuiteUtiliti es\server. exe

These executable files, client.exe and server.exe, are for testing server-side and client-side implementations of the |++ specification,
respectively. For information on how to run client.exe, see Section 7.1. For information on how to run server.exe, see Section 8.1.

|++TestFiles
LogFiles
testSuiteUtilities clientl.l.exe

serverl.l.exe
NISTI++DM EtestSuitel.1UsersManual . pdf

NISTI++DMEtestSuitel.1 |++TestFiles

. artifacts
clientComponents _ ~~lego
client

README.doc
. CmdContextChecker
testSuiteComponents sc CmdParser

serverComponent:
CmdResClasses

CMM
Debug Executor
Server

README.txt

CheckerCmdPC
standAloneTestSuiteComponents CheckerCmdUNIX

ParserCmdPC
ParserCmdUNIX
ParserResPC
ParserResUNIX

Figure 1: Directory structure for the NIST test suite version 1.1

2.3 Using the test cases

The test cases currently consist of two items, 1) test files of |++ command strings and 2) a test artifact. The test files and files
describing the artifact are included in the test suite and are located in the following directories:

NI STI ++DVEt est Sui t el. 1\t est Sui t eConponent s\ cl i ent Conponents\ | ++test files
NI STI ++DVEt est Sui t el. 1\t est Sui t eConponent s\ cl i ent Conponents\artifacts\lego

How to usethetest filesis described in Section 7.4 and how to purchase, assemble, and provide Computer-Aided Design (CAD)
support for the Lego? artifact is described in Section 7.5.

Thetest casesdescribed above are only for testing server-sideimplementations. Currently, only asingletest case existsfor testing
client-side implementations...it provides correct responses only. We plan to add more test cases by providing incorrect responsesin
order to more fully test client-side implementations.

3 Platform requirements

All code in this test suite is intended to be developed and run on a PC running Microsoft Visual C++ version 6.0 Professional.
The server-side and client-side utilities, as well as the stand-alone component executables (see Section 6.2, created in Visual C++
should run under all Windows-based operating systems (at least on Windows 95 and all subsequent versions). Certain software
components in the test suite, namely, the graphical user interface (GUI) front end and the Transmission Control Protocol/Internet
Protocol (TCP/IP) socket read/write component, are heavily dependent on the Visual C++ platform constraint. Others such as the
parser and the context checker are not. The socket facility isWinsock version 1.1.

L1 Certain commercial companiesand their equipment, instruments, or materialsareidentified in this paper in order to specify the experimental procedure adequately.
Such identification is not intended to imply any judgment by the National Institute of Standards and Technology concerning the companies or their products, nor isit
intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

4 How to get the most out of the entire test suite

Thistest suiteiscurrently designed to facilitate the creation of 1++ DM E Specification-compliant implementations and not to provide
compliance tests. Compliance (and interoperability) testing is planned for a second phase of test suite development. The test suite
currently facilitates both client and server side implementations and we suggest that it be used in the following three ways:

1. provide utilities that can be run against an implementation to validate correct performance and help speed up debug efforts
2. make available all test suite components which can be integrated into anyone’s implementation, which will

(8 shorten implementation development times
(b) tend to standardize and simplify implementations, further ensuring successful system interoperability in the end

3. provide abenchmark interpretation of the specification that will be used to clarify and disambiguate the specification itself

We now describe these three ways of using the test suite in more detail.

4.1 Using the executables to facilitate implementation development
Thistype of useis described in Section 2.

4.2 Using software modules to facilitate implementation development

Theintent of thistest suiteisnot only to provide utilities that will ultimately test implementations for compliance, but also to provide
code modules, such ascommand and response classes, command and response string parsersthat can be used by implementors of the
I++ DME specification. We believe that the use of this code can greatly facilitate implementation development (on both client and
server sides of the DME interface). Even more so, we anticipate that the use of common code like that provided in the NIST DME
test suite, will greatly speed up the testing of implementations, allow the specification to grow into a quality, sufficiently functional,
and unambiguous specification, and finally will allow the specification to move into a standards phase much more quickly.

For example, all developers of server-side implementations need a command-string parsing engine of some sort in their code.
However, if all implementors agree to use the same command-string parsing engine (parsing being a highly modularizable function),
all can make improvementsto it and when testing is complete, the parsing code will be of high quality. It still would not be required
by the specification, but simply helpful for devel oping efficient implementations. The same arguably goes for several other parts of
the NIST test suite, including modules for socket read/write, command context checking, command classes, response classes, log
file generation, and response context checking. These and other modules should not be required as standard by the specification, but
if employed as common code in all implementations, a higher quality specification and ultimately a higher level of interoperability
will be achieved.

4.3 Using the test suite to improve the specification

An unambiguous, tightly-defined, and fully functional specification isessential to ultimately ensure interoperability between various
implementations. Undoubtedly, as we devel op implementations and use the test suite, weaknesses within the specification will be
revealed. What better time than during the development and testing phase to correct these weaknesses...before the specification is
released as an international standard?

5 Using the test suite for conformance and interoperability testing

It isNIST’s ultimate intent to have this test suite be expanded to support actual conformance tests and interoperability tests, i.e., the
components of this expanded test suite will be used to test the conformance of any single implementation of the specification and
finally to support interoperability tests on pairs of implementations. Which is to say that the test suite provided does not currently
constitute aformal test suite, since they are not accompanied by any test metric, test results analysis tools, or test procedures. More
importantly, we have not defined enough test cases, providing sufficient coverage, to qualify thetest suite as suitablefor conformance.

Though we are not currently providing conformance tests, we do include a preliminary set of test cases (see Section 7.4) for
facilitating both server-side and client-side implementation development. The client-side test cases consist of atest artifact and test
inspection programs. The test inspection programs consist of text files of 1++ DME compliant command strings and a specification

for the format of that text file. One of the server-side componentsisasingle test case for responses. Thistest case always produces
correct responses, but we have placeholders for adding more test cases which can create incorrect responses of various types. Our
client-side utility also produces alog file to facilitate debugging and ultimately to use for testing compliance.

In an earlier version of the client-side utility for a prior DME specification devel opment effort, the client-side utility was used to
run aDME command file on a coordinate measuring machine (CMM) located at afacility in England (LK Metrology, Ltd.) remotely
from NIST in Gaithersburg, Maryland, USA. For that demonstration, a user-controlled pan/tilt/zoom camera was integrated into the
environment with aweb-based video server to alow the inspection program to be viewed from NIST. We envision this capability to
be particularly useful for future interoperability testing, but also for conformance testing.

6 Introducing the components of the test suite

6.1 Thetwo sets of components within the test suite: client-side components and server-side components
The test suite currently consists of two separate sets of components.

» Client-side components for facilitating the development of server-side (i.e., the equipment side of the interface) implementa
tions. Table 1 lists all the client-side components and gives a brief description of the operation of each component.

» Server-side componentsfor facilitating client-side (i.e., the application software side of theinterface) implementations. Table2
lists all the components of the server-side components and gives a brief description of the operation of each component.

The operation of these two sets of components, both as a test suite and as actual implementations, is illustrated in Figure 2. In
this figure we see the components of the test suite that can be used in actual implementation code and those that normally will not.
We want to encourage implementors to particularly consider the use of the command and response classes, which encapsulate so
much interpretive knowledge about the specification that we believe it will be helpful in assuring interoperability between those
implementations that use the same set of command and response classes.

6.2 Stand-alone components versus stripped-down components

All the components listed in Tables 1 and 2 are located in NISTI++DMEtestSuitel.1\testSuiteComponents\. This directory is
intended to be used by those developers that 1) want to bring up the entire client-side or server-side project (or workspace) within
the Visual C++ environment and immediately begin editing, compiling, and linking or 2) developers that want to include some or
all of these components in their implementations. Some of the subdirectories do not contain source code, for example, the artifacts
subdirectory. The source code files in NISTI++DM EtestSuitel.1\testSuiteComponents\ are compiled and linked into either the
client-side or server-side utility. Therefore, they are stripped-down versions of the components, in the sense that they cannot be
compiled and executed alone.

Severa of the components have stand-alone versions with main() functions. These components are located in NISTI++DME
testSuitel.1\ standAloneTestSuiteComponents\. Thesewill be helpful 1) to instruct an implementor how the component needsto be
called within the implementor’s code and 2) in certain cases, the stand alone code can be used to test the validity of command and
response strings files.

6.3 Who to contact for a particular test suite component

In order to best usethetest suite components, it’sgood to know who to contact when questions arise. Table 3identifiestheindividuals
responsible for each component’s development and maintenance (all of these individuals are NIST staff members and co-authors of
this user’'s manual).

We will now describe how to fully utilize these components for developing quality implementations in an expeditious manner.

7 Using the client-side components for facilitating server-side implementations

Here'sasummary of the operation of the client-side utility. The I[++ DME commands are sent over a TCP/IP socket to an |++ DME
compliant server. The server receives the commands, executes them, and returns the appropriate response back to the client-side
utility viathe socket. The client-side creates a time-stamped logfile of 1++ DME commands sent and responses received over the
socket.

Command test

: : High-level inspection |
filesand log files program execution [

Y

CAD

)

High-level language (e.g., DMIS) to

Log file generation I++ DME language interpretation

Client-side GUI and

Command
fileread

response parsing (using| and GUI
command/response

C++ classes)

C++ classes) C++ classes)

Response string Command string
parsing (using generation (using
command/response command/response

TCP/IP socket reading TCP/IP socket writing

TCP/IP socket writing

TCP/IP socket reading

Response string generation | Command string parsing (using
(using command/response |command/response C++ classes)
C++ classes) and command context checking

Server-side implementation:
|++ DME to native tranglation

A

Server-side GUI
and command execution
(coarse CMM simulation)

Log file generation

Y
Native
control

log files /

_ | test
CMM (<> artifact

Legend

- NIST test suite for I++ DME interface specification (not used in
implementations)

Actual client and server implementations (not used in test suite)

- Components shared by actual implementation and test suite systems

Figure 2: 1++ DME Interface Specification Testing and Implementation Systems

7

)

)

Interface

client

server

Table 1: A list of all the client-side components along with a brief description of what each does and whereit islocated

Client-side component || Description

| Directory location

GUI front end Providesafront end to theimplementation devel oper that iseasy
to comprehend and use and also contains the "glue" code that
integrates all client side components

NISTI++DMEtestSuitel.1\
testSuiteComponents\
clientComponents\client

TCP/IP socket read and write Writes command strings and reads response strings from the
specified TCP/IP channel

This component is currently integrated
into the GUI front end code (client).
Modularizationisplannedfor alater ver-
sion. However, it can currently beeasily
extracted from client.

Response parser As a complement to the command parser, it receives response
stringsasinput and outputs either an error message or aninstance
of theappropriateresponse classstuffed withtheval uesextracted
from the response string

aresponse parser is not required for op-
eration of the current client-side utility,
since no context checking is done, but
a stand-alone response parser can be
found in NISTI++DMEtestSuitel.1\
standAloneTestSuiteComponents\
ParserResPC

Client-side log file generator Thelog filerecordstime-stamped versions of all commands sent
and responses received

Currently integrated into the GUI front
end. Modularization is planned for a
later version. Furthermore, it canbeeas-
ily extracted from client.

Test command files These test files consist of strings of 1++ DME compliant com-
mands. Currently consist of the following subsets of test files:
1) test files in which each contains one and only one command,
2) test files with multiple commands, 3) test files with syntax
errors, 3) test files with semantic errors, and 4) test files for real
execution on the Lego artifact

NISTI++DMEtestSuitel.1\
testSuiteComponents\
clientComponents\ | ++test_files

Test artifact Consists of an assembly constructed from Lego parts, where
all these parts are contained in Lego sets currently available on
www.lego.com. Thetest case containsartifact assembly instruc-
tions, aCAD representation, and ashopping list for therequired
parts. Provides low cost, high malleability, and high worldwide
availability at the cost of low measurement accuracy

NISTI++DMEtestSuitel.1\
testSuiteComponents\
clientComponents\artifacts\lego

The client-side components provide developers with a GUI alowing the devel oper easy control over a number of parameters,
including the choice of the TCP/IP socket channel number, the choice of inspection programs (test files) to run, and the choice of
whether to type in commands by hand, run test files in toto, or run test files line by line. The client-side GUI also generates a log
file that is helpful for debugging. The log file contains time-stamped versions of all commands sent and responses received for
each test file run. The client-side utility checks that the response is consistent with the command sent for matching tag numbers
between command and response. The client-side GUI contains a response parser, however we have devel oped new response parser
that is more consistent with the command parser in the server-side utility (described in Section 8). This new response parser will be

integrated into the client-side utility in alater version of the test suite.

Insummary, theclient-side componentsconsist of thefollowing components. Table1 givesadescription of each of thecomponents

listed here:
* GUI front end
» TCP/IP socket read and write
* Response parser
» Log file generator

» Test cases consisting of

Table 2: A list of all the server-side components along with a brief description of what each does and where it islocated.

Server-side component

| Description

| Directory location \

TCP/IP socket read and write

Reads command strings and writes response strings from the
specified TCP/IP channel

Currently integrated into the GUI front
end. Modularization is planned for a
later version. Furthermore, it canbeeas-
ily extracted from client.

Command parser

Receives command strings as input and outputs either an error
message or an instance of the appropriate command class stuffed
with the values extracted from the response string

NISTI++DMEtestSuitel.1\
testSuiteComponents\
serverComponents\ CmdParser

Command context checker

Looks at the current command in light of the commands pre-
viously executed. If the context isillegal, an error is sent. If
the context is legal, the command is sent to the executor for
execution

NISTI++DMEtestSuitel.1\
testSuiteComponents\
serverComponents\ CmdContextChecker

Command executor (CMM sim-
ulator)

Executes commands and generates responses according to the
test cases selected in the server-side GUI

NISTI++DMEtestSuitel.1\
testSuiteComponents\
serverComponents\ Executor

Server-side GUI front end

Providesafront end to theimplementation devel oper that iseasy

NISTI++DMEtestSuitel.1\

to comprehend and use testSuiteComponents\
serverComponents\ Server
Command and response C++ || Definesall thedatastructuresand methodsnecessary for building || NISTI++DMEtestSuitel.1\
classes instances of command and response, including the ability to || testSuiteComponents\

generated lists (queues) of commands and responses

serverComponents\ CmdResClasses

Server-side utility

Integrates the command parser, the context checker, the com-
mand and response class instances, the server-side GUI front
end, the command executor, and the socket read/write facility
into a single executable utility

NISTI++DMEtestSuitel.1\
testSuiteComponents\
serverComponents\ Server

World model

Contains dataand methodsfor storing and maintaining informa-
tion about the state of the CMM and its environment

NISTI++DMEtestSuitel.1\
testSuiteComponents\
serverComponents\CMM

— Test files of I++ command strings (some with errors and some without)

— A Lego artifact consisting of assembly instructions, CAD representation, and parts shopping list

7.1 Operating the GUI front end

Figure 3 illustrates the client-side GUI. To execute the client-side utility, the user first selects which type of fileto run (I++ DME or
DMIS (Dimensional Measurement Interface Standard)) and then enters the name of the file to run. When a DMISfileis selected,
the fileisrun though an interpreter that converts the DMIS command to the appropriate [++ DME command(s). Only a select group
of DMIS commands are supported at thistime. The user then enters the part transformation information representing the translation
and rotation required to go from machine to part coordinates, sincetest file position values arein the part coordinate system. For the
Lego artifact, the part origin is at the outside corner of the "tower" section (the section containing the highest point on the artifact), at
the base of the entire artifact, with the x-axis along the long side of the tower, the y-axis along the short side, and the z-axis pointing
up. The user then selects the name of the logfile where the time-stamped data will be recorded.

The user specifies the Hostname of the 1++ DME compliant server to connect to. The Hostname can be entered as either fully
qualified hostname or | P address. The user then specifies the port number to create the socket with. The default port number, 1294,
is the one given in the I++ DME specification. When the user clicks on the "Connect to CMM Controller” button, a non-blocking
TCP/IP socket is created between the client-side utility and the CMM server on the specified port. Once the client-side utility is
connected to the server, the user can either enter acommand manually, single step through the program file that was selected, or run
the entirefile. A status window displays the current status of the program, including the command just sent or response received as
well asthe existence of any error conditions.

Table 3: A list of the test suite components and the individual s responsible for them

Test Suite Components Individuals Responsible for Component Development and
Maintenance

Client-side GUI front end Keith Stouffer

Client-side utility Keith Stouffer

TCP/IP socket read and write Keith Stouffer

Command parser Tom Kramer

Response parser Tom Kramer

Client-side log file generator Keith Stouffer, Hui-Min Huang, and Cathy Liu

Test command files Tom Kramer and Cathy Liu

Test artifact John Horst

Command context checker Tom Kramer

Command executor (CMM simulator) Cathy Liu, Joe Falco, and Hui-Min Huang

Server-side GUI front end Keith Stouffer

Command and response C++ classes Joe Falco, Tom Kramer, and John Horst

Server-side utility Joe Falco, Tom Kramer, Hui-Min Huang, and Cathy Liu

7.2 Using the TCP/IP socket read and write code

The code for reading from and writing to the TCP/IP socket is common for both client and server side components. Since we are
restricting implementation platforms to be a PC with a Windows operating system, the socket read/write code component can be
easily integrated into implementation code, saving the implementor much time and effort. So, the socket read/write component
in the test suite is one of those components that is used in the executing utilities (both server and client side) and can be used in
implementation code, asisillustrated in Figure 2.

7.3 Using the log file generation code

Thelog file generation code is modularizable, but not currently defined as a separate module. We plan to add thisin our next version
of the test suite.

However, if any implementors wish to extract the log file generation code themselves, they are able to. Simply access the file,
ServerDlg.cpp located in

\' NI STI ++DIVEt est Sui t el. 1\t est Sui t eConponent s\ ser ver Conponent s\ src\ Ser ver

7.4 Using the command string test files

Types of test files: Thetest files consist of lines of command strings. Our current set of test files fall into four separate categories.
The four categories with the corresponding files that belong to each category are listed in Table 4.

We now describe the format and content of these files. This allow you to devel op and be able to share your own test fileswith all
other developers.

7.4.1 Format of command strings

This file uses the syntax requirements previously proposed for I1++ DME Interface command strings by NIST. The requirements on
tags in the proposal have been modified to reflect the decision made at the July 3, 2002 meeting in Frankfurt, Germany that the only
requirement on tags beyond their basic format be that a tag be unique among currently active tags.

This document covers the syntax of individual command strings. For a command string to be legal in a session, it is necessary
but not sufficient that its syntax conform to the requirements given here. Constraints on the situations in which a command string
may be given exist, but are not included here.

Any string purported to be acommand string but failing to conform to the requirements given here should cause an error of some
type to be issued by the server.

10

#2= Client 1.1

i~ l++ Clignt Lltility -

— Diivver File Type e
© I++ DME File " DMIS File
Set Drives File 1127.00.1
l — Socket Part Mumber
1294
— Log File

Connect to CMM Server

Single Step Thiough File

Execute Entie File

l

— Manual Command Input

Execute Manual Command

Dizconnect from Chbd Semver

Figure 3: The client-side GUI front end

1. Whatisan I++ Command String?

An I++ command string is a string of characters intended to be put into a character string to be transmitted by aclient through
a communications system to an |++ DME Interface server. The command string represents an |++ DME Interface command.
See section 7.4.2 for details on command files and character strings.

2. Useof ASCII

All referencesto ASCII charactersin this command string spec are given using decimal (not octal or hex) numbers. An ASCI|
number enclosed in angle brackets (e.g., <13>) is used to represent ASCII characters.

3. Character Set

All bytesin acommand string are to be interpreted as 8-bit ASCII characters. The 8th bit must always be zero.
Only charactersin the range from <32> (space) to <126> () may be used, except that the character pair carriage return <13>

and line feed <10> is used as a command string terminator.

The characters <13> and <10> may not occur anywhere else in a command string other than at the end, and in the order

<13><10>.

11

Table 4: A list of all the command string test files by type of test

Type of test file

[

Test file names

Test files that each contain one or more instances of one type
of command (plus instances of any other commands required to
establish acontext or to make the file usable without error in the
client utility)

AbortE.prg, AlignTool.prg, ChangeTool.prg, ClearAllEr-
rors.prg, DisableUser.prg, EnableUser.prg, EndSession.prg,
EnumAllProp.prg, EnumProp.prg, FindTool.prg, Get.prg,
GetCoordSystem.prg, GetCsyTransformation.prg, GetEr-
rorlnfo.prg, GetErrStatusE.prg, GetMachineClass.prg,
GetProp.prg, GetPropE.prg, GetXtdErrStatus.prg, GoTo.prg,
Homeprg, IsHomed.prg, IsUserEnabled.prg, OnMoveRe-
portE.prg, OnPtMeasReport.prg, PtMeas.prg, ReQudlify.prg,
SetCoordSystem.prg, SetCsyTransformation.prg, SetProp.prg,
SetTool.prg, StartSession.prg, StopAllDaemons.prg, StopDae-
mon.prg

test filesthat contain some syntactical errorsin command strings

numbers_error.prg, parser_errors.prg

test filesthat contain somelogical or semantic errorsin the com-
mand strings

checker_errors.prg

test files that contain multiple correct command strings

numbers_ok.prg, al_ok.prg

test files that contain commands for use on the test artifact

lego.prg

Upper case letters and lower case |etters are regarded as different letters. In other words, command strings are case sensitive.

Command String Length

The maximum number of charactersin acommand string, including the <CR><LF>, must not exceed 65536.

Numbers
Numbers are defined in the following hierarchy.

number
integer
unsigned_four_digit_integer
decimal_point_number
no_exponent_number
exponent_number

A digit isone of the characters 0 to 9 (<48> to <57>).

Anunsigned_four_digit_integer consists of exactly four digits. Example: 0287

An integer consists of an optional plus <43> or minus <45> sign followed by one to sixteen digits. Example: +287741
Note that every unsigned_four_digit_integer is also an integer.

A no_exponent_number consists of an optional plus or minus sign followed by either: a. adecimal point <46> followed by
one to sixteen digits, or b. one or more digits followed by a decimal point followed by zero or more digits so that the total
number of digits before and after the decimal point is not more than sixteen. Examples: (@) -.3090 (b) 5.31

An exponent_number consists of an optional plus or minus sign followed by one non-zero digit followed by a decimal point
followed by zero to fifteen more digits followed by an E <69> or an e <101> followed by an optional plus or minus sign
followed by exactly two digits. Example: -2.8843e02

A decima_point_number is either an exponent_number or ano_exponent_number.
A number is either an integer or adecimal_point_number.
The values of all types of numbers are to be interpreted in the normal way as base ten numbers.

12

6. Strings
A string consists of adouble quote <34>, followed by zero to 255 of the characters allowed by Section 3 in the I++ DME spec
(excluding <34>, <13>, and <10>) followed by a double quote.
7. Tags
There are two types of tags:
CommandTag EventTag

A CommandTag is formed by putting the digit zero <48> before an unsigned_four_digit_integer. This makes CommandTags
look like five-digit integers, but that appearance isirrelevant. The command tag 00000 may not be used.

An EventTag is formed by putting an upper case E <69> before an unsigned four_digit_integer. The EventTag EOO00 may
not be used in acommand string.

Examples of CommandTags:

04711 // tag is OK

00020 // tag is OK

20// error; only 2 characters

10710 // error; first character not zero
00000 // error; explicitly disallowed.

Examples of EventTags:

E4711// tagis OK

E0333 // tag is OK

€0333 // error; illegal first character, must use upper case E
EO00Q0 // error; explicitly disallowed

E20 // error; only 3 characters

AA4711 /] error; first character not E

Thefirst 5 characters of acommand string represent a tag.

8. Command String Syntax
A command string consists of the following, in order

(@ atag

(b) aspace

(c) amethod name

(d) aleft parenthesis <40>

() anoptional argument_list

(f) aright parenthesis <41>

(g) acarriage return line feed pair <13><10>
Anargument_list consistsof oneor morearguments separated by commas. A commamust not be placed after the last argument.
One space may optionally follow each comma.
An argument is a number, a string, or amethod_identifier.

A simple_method is a method name followed by aleft parenthesis followed by either: a. aright parenthesis, or b. a number
or astring followed by aright parenthesis.

A method_identifier is one of the following:

(8 asimple method
(b) amethod name followed by a period followed by a simple_method

13

(c) amethod name followed by a period followed by a method name followed by a period followed by asimple_method.
Example: FoundTool.PtM easPar.Speed()

(d) amethod name followed by a period followed by a method name followed by a period followed by a method name
followed by a period followed by asimple_method. Example: FoundTool.PtM easPar.Speed.Min()
A method name is the name of one of the methods defined in Section 6.3 of the |++ DME Interface Specification version 1.1.
Method names are not enclosed in quotes.
Only those combinations of method names and arguments defined in Section 6.3 of the I++ DME Interface Specification
version 1.1 may be used together.
Examples
The following are example of potentially legal command strings. They may becomeillegal in context.
00001 StartSession()<13><10>
01095 GoTo(X(-0.75), Y (1.0), Z(-.00))<13><10>
07003 GetProp(FoundTool .PtM easPar. Speed())<13><10>

7.4.2 Format of command string test files

1

What is an 1++ DME Interface Command File?

An I++ DME Interface Command File is a file containing character strings to be stuffed into messages and sent to an |++
DME Interface server. Each character string represents alegal or illegal command message. The command file also contains
character string separator sequences and end of file sequences that are not part of the character strings. In this spec "character
string" will be used to refer to the characters that go into the message.

Suffix

Command files are identified by a".prg" suffix.

Communications

It is assumed here that sockets are being used for communications. When sockets are used, the length of the character string
being transmitted is given in the communication, and no terminator (such asaNULL) is used in the character string.

To be suitable for use with some other communications method, this file format may need to be modified.

Use of ASCII

All references to ASCII characters in this file spec are given using decimal (not octal or hex) numbers. An ASCII number
enclosed in angle brackets (e.g., <13>) is used to represent ASCII characters.

How the Command Fileis Divided

The first character string of a command file starts with the first character in the file and ends on the last character before the
first occurrence of two backslashes followed by a carriage return followed by aline feed (i.e., <92><92><13><10>). The
second character string starts with the next character in the file after that and ends on thefirst character before next occurrence
of <92><92><13><10>, and so on. The <92><92><13><10> sequence is a separator and is not part of any character string.

The backslashes are used so that character strings representing illegal commands with <13><10> inside can be written in the
file and used for testing.

To end thefile, after the <92><92><13><10> following the last character string, there should be the sequence <58><13><10>
<58><13><10>. This has the appearance of two lines each containing only a colon.

Using ASCI|I for non-printing characters, hereisan example (written on two lines) of an entire command file with two character
stringsin it, each representing alegal command:

00001 StartSession()<13><10>\ \ <13><10>
00002 EndSession()<13><10>\ \ <13><10><58><13><10><58><13><10>

Thefirst character string is: 00001 StartSession()<13><10> The second character string is: 00002 EndSession()<13><10>
When thisfileisviewed in most file viewers, it has the following appearance:

14

00001 StartSession()

\\

00002 EndSession()

\\

Legal Character Strings

A legal character string consists of alegal command string, as defined in 7.4.1, and nothing else.
A legal command string followed by any other characters before the separator forms an illegal character string.

Multiple Sessions

Files of legal commands must always begin with a StartSession command. Filesthat represent compl ete sessions must always
end with an EndSession command. Multiple sessions may be included in asinglefile.

Comments

Command files contain no comments. Thisisto keep parsing easy. Itisintended that a.txt (text) file with the same base name
accompany each .prg file. The .txt file should explain the .prg file. It is suggested that the .txt file include every line of the .prg

file.

Reading of command files is expected to stop when the two colons ending the file are encountered. Thus, for most command
file readers, anything after the colonsis effectively a comment. Users who choose to do so can put comments there.

Examples

In these examples, the character string separators are represented as\ \ alone on aline, and it is assumed each line ends with

<13><10>.

@

(b)

All Legal File

Inthisfile, all the character strings represent legal commands given in alegal order.

StartSession()

\\

Home()

\\

GoTo(X(3), Y(-2.0))
\\

EndSession()

\\

All lllegal Character Strings File

In thisfile, all the characters strings areillegal.
StartSession()

hi mom

\\

home()

\\

GoTo(X3,Y-2)

\\

The first character string has "hi mom" after the first <13><10> and before the end of the string.
The second character string spells the command "home" starting with alower case h (must be upper case).
The third character string fails to put the X andY valuesin parentheses.

7.5 Using the Lego test artifact
7.5.1 How to purchase, assemble, and provide CAD support for the Lego artifact

The following three files are needed to purchase, assemble, and provide CAD support for the Lego artifact:

NI STI ++DVEt est Sui t el. 1\t est Sui t eConponent s\ cl i ent Conponents\artifacts\lego\l ego
shopping list.xls

NI STI ++DIVEt est Sui t el. 1\t est Sui t eConponent s\ cl i ent Conponents\arti facts\I| ego\

| egoArtifact Assenbl yl nstructi ons. pdf

NI STI ++DIVEt est Sui t el. 1\t est Sui t eConponent s\ cl i ent Conponents\artifacts\I| ego\ ProE

We now describe the contents of these two files and one folder

» Thefirst file, lego shopping list.xls, consists of the following spreadsheets

— A listing of the primary sets containing the required parts for the artifact

— Alisting of several alternate sets containing the required part(s) (in case the primary set containing the required part(s)
becomes unavailable on www.lego.com)

» The second file, legoArtifactAssemblylnstructions.pdf, contains the assembly instructions for constructing the artifact from
its component parts. These assembly instructions are automatically generated output from MLCAD, a CAD program for
assembling Lego parts. MLCAD is built on top of LDraw, alow level part definition software?. The assembly instructions
output of MLCAD give aclear and detailed sequence of artifact assembly, part by part. It aso lists the part numbers and part
names in the standard nomenclature of the L Draw specification.

» Thedirectory, ProE, contains a representation of the artifact in a commercially available CAD format, which can be used to
create further test files using appropriate simulation and program generation software.

The part names and numbers are listed at the end of every section of the assembly instructions (file name is legoArtifactAssem-
blylnstructions.pdf). Match these to the same names and numbersin the Lego shopping list spreadsheet in order to find in which set
each particular part can be found. If you're lost, look at www.peeron.com, locate the set by the set number printed on the box (or
bag), display the pictures of al the component parts of the set, and use those pictures to locate the correct part in the correct set.

7.5.2 How to set up the Lego artifact: definition of part origin and axis orientation

Referring to Figures 4 and 5, we define the part origin to be at the outside corner of the "tower" section (the section containing the
highest point on the artifact), at the base of the entire artifact, with the x-axis along the long side of the tower, the y-axis along the
short side, and the z-axis pointing up.

7.5.3 Reasons for the particular choice of parts on the Lego artifact

The Dimensional Metrology Equipment (DME) interface requires that the artifact allow the testing of simple motion and touch
probing, aswell as scanning, hon-contact probing, probe clusters, wrist motion, and multiple carriage activity. The artifact has been
designed with these activities in mind. Referring to Figures 4 and 5, we argue that

» The"Canopy Half Sphere 6 x 6 x 3 with Hinge" part on the artifact should be useful for testing scanning and synchronous
wrist and carriage motion

* The presence of inner and outer cylinder parts and several inset |ocations should be useful for wrist motion and probe clusters
» The presence of several measurement locations that are widely spaced should be useful for testing multiple carriages
* Thereare severd locations on the artifact suitable for use as a datum

* The"Cylinder 4 x 4 Hemisphere Multifaceted" part should be useful for exercising wrist motion and scanning given that the
part has small planar facets with surface normal vectors at angles spanning roughly 4+ radians in the both the x-z and y-z
planes

2Both MLCAD and L Draw are freely available at http://www.lm-software.com/mlcad/ and http://www.ldraw.org/, respectively

16

Cones and cylinders of various sizes and orientations, concentrically located on the artifact, may not be important for DME
interface testing, but if a high level language like DMIS is used by the application software, these features could be helpful,
too

The entire artifact must be secured with some kind of adhesive. Likewise, certain parts on the artifact will also need to be similarly
secured, particularly the "Canopy Half Sphere 6 x 6 x 3 with Hinge" and the "Cylinder 4 x 4 Hemisphere Multifaceted.”

We have written a file of 1++ DME specification version 1.1 compliant command strings called, lego.prg (see Table 4), for

execution with NIST’s test suite utilities on the NIST Lego artifact.

7.5.4 Arguments for (and against) using the Lego artifact

In order to satisfy a variety of interface specification testing needs, an artifact has been designed at NIST consisting of a simple
assembly of commercially available "components." The artifact isintended to be used for interface specifications not requiring high
positional accuracy, but requiring high availability, malleability, and low cost. The artifact consists of an assembly of components
or "parts." These parts can be found in "sets" that are available to be shipped within a day or two to any location worldwide from
www.lego.com. The argument for using Lego parts and Lego setsis as follows:

It will make the artifact easily and quickly obtainable
The artifact can be easily and quickly modified

Testing of interface specifications should not require measurement precision, so we can live with the kind of error that we
would expect from artifact to artifact, however, we can still make each artifact quite stiff

It will keep the price of the artifact down

We can approximate several of the features we would expect to encounter in automotive/aerospace parts

Even though the accuracy in each instance of the artifact will vary substantially more than other commonly employed test artifacts,

effort has been made to make the artifact as stiff as possible, partly through the use of two layers of large "brick™ parts on the bottom
to provide tiffness in the foundation.

There are some negatives to using L egos, namely,

Cannot realize certain features such asfillets
Artifact to artifact errors will be relatively large, due to the manual construction

Sets currently available worldwide on www.lego.com may become unavailable at alater date

We have tried to mitigate some of these negatives as follows:

We havefound and list al currently available sets containing each required part to allow alternativesif the primary set becomes
unavailable

We have chosen parts from sets that are reasonably expected to be perennially available on www.lego.com, e.g., bulk parts
seem to be consistently available worldwide

For partsin those setsthat may suddenly become unavailable, we plan to keep updating the artifact and publishing any changes
to al users

Depending on the usefulness to the community of this artifact, we may choose to "stockpil€" those parts we anticipate may
suddenly become unavailable

17

inclined plane

Cylinder 4 x 4 cones
Hemisphere Multifaceted i
¥ \ pyramid inset features
outer cylinders \ .
Canopy Half Sphere - NSRS = .
6 x 6 x 3 with Hinge B

Figure 4: The Lego artifact: viewpoint #1

18

outer cylinders

Canopy Half Sphere
6 X 6 x 3 with Hinge

Hemisphere Multifaceted

Figure 5: The Lego artifact: viewpoint #2

19

7.6 Using the response parser code

The client-side utility executable contains aresponse parser. However, another response parser, one that has not yet been integrated
into the client-side executable, has been developed and tested, one that is more consistent with the command parser. Developers are
encouraged to utilize this latter resource as a stand-al one parser for 1++ response files to check that responses are parsable. We plan
in our next version to integrate this parser into the client-side utility executable.

All files relating to the PC and UNIX versions, respectively, of the response parser can be found in

NI STI ++DMVEt est Sui t el. 1\ st andAl oneTest Sui t eConponent s\ Par ser ResPC\
NI STI ++DMVEt est Sui t el. 1\ st andAl oneTest Sui t eConponent s\ Par ser ResUNI X\

and all directorieslisted in this section are subdirectories of ParserResPC only, sincethe UNIX version has only minor modifications.
The PC software compiles under Visual C++ (version 6.0 Professional) consistent with our platform constraints (see Section 3).

7.6.1 Using the response parser as stand-alone support for server-side implementations

An executablefor the stand-al one response parser, which should run on any Windows operating system, isbin\ parserRes.exe. Sample
responsefilesarein \test_files. Use the executable with acommand as follows:

bi n\ parser Res. exe <file nanme>

with your file name substituted for <file name>.
for example,

bi n\ parserRes. exe test _files\all _res_ok.res

Descriptions of the format of response strings and response string files are in Sections 7.6.3 and 7.6.4.

Thetest_files subdirectory contains only two test programs, all_ok.prg and checker_errors.prg. More test files may be available
in other directoriesin this distribution, but check to be sure the format is as described in Section 7.6.4.

Themain function reads response stringsfrom the responsefile, and callsthe parser’s parseResponse method. If parsing succeeds,
parseResponse makes an instance of a Response and returns a pointer to it. The main function then prints the response followed by
\'\ onaseparateline. If parsing fails, parseResponse returnsaNULL pointer. The main function then prints the text of the response
string followed by the error message caused by the response string. To test your own responses, put them in afile in the required
format, and give the shell command described above.

7.6.2 Integrating the response parser in a client-side implementation

To use the response parser in your own client-side implementation, the setInput() method must first be called to copy an input string
into the parser’sinputArray.
The caller should then call parseResponse(). If there is no error in the input string, parseResponse makes an instance of a
Response from the input string and returns a pointer to that instance. If thereis an error, parseResponse returns a NULL pointer.
After calling parseResponse, the caller should call getParserErr() to see if there was an error. If the returned error code is not
OK, the caller can call getErrorMessage(code) to get an error message that describesthe error. If the error code is OK, the caller can
start processing the Response instance. The caller may call parseTag() before calling parseResponse(), but that is not required.
Now we look at the syntax of individual response strings.

7.6.3 Format of response strings

General issues relating to response strings: Any string purported to be aresponse string but failing to conform to the requirements
given here should cause an error in the client.
1. Whatisan [++ response string?
An I++ response string is a string of characters intended to be put into a character string to be transmitted by an |++ DME
Interface server through a communications system to aclient. The response string represents an |++ DME Interface response.
2. Useof ASCII (American Standard Code for Information Interchange)

The use of ASCI| isasdescribed in section 7.4.1. Inthisfile, an ASCII character may be denoted by a decimal integer in angle
brackets. For example, <32> isthe ASCI| space character.

20

Character set
The use of charactersis as described in section 7.4.1.

Response string length

The number of charactersin aresponse string, including the <13><10> at the end, must not exceed 256. This differsfrom the
length requirements for commands.

Numbers

The format of numbersis as described in section 7.4.1.

Strings

The format of stringsis as described in section 7.4.1.

Tags
The format of tags is as described in section 7.4.1. The EventTag EO000 may be used in aresponse string to indicate errors
that are not the result of executing a command or cannot be identified with a specific command.

If aresponse can be identified with a command, the tag in the response must be the same as the tag in the command.

Commas

Whenever a comma <44> is used, it may optionally be followed by a single space <32>. Spaces may not be used anywhere
else. Wherever the use of acommais described below, it isimplicit that the optional space may be used.

Response string syntax

A response string consists of the following, in order

(@ atag.

(b) aspace.

(c) asingle character that is aresponse type indicator. This must be one of & <38>, %<37>, #<35>, or 1<33>.
(d) zeroto many continuation characters as described below.

(e) acarriagereturn line feed pair <13><10>.

If the response typeindicator is & or %, there are zero continuation characters.
If the response typeindicator is! or #, the first continuation character is always a space.

Error response: If the response type indicator is!, this indicates an error. The additional continuation characters consist of the
following, in order.

1
2.
3.

ol

10.

© oo N ©

"Error" (without the quotes).
aleft parenthesis <40>.

asingle character that must be one of 1 2 3 9. This character must be the severity character as given in section 8.2 of the spec
for the error number described in e (below).

acomma

anumber consisting of four digits (with no sign and no decimal point) that is one of the error numbers given in section 8.2 of
the spec.

acomma.
astring.

acomma.

astring. This string must be the text as given in section 8.2 of the spec for the error number described initem 5 (above).

aright parenthesis <41>

21

Data response: |f the responsetypeindicator is#, thisindicates datais being returned. The additional continuation characters are
one of following.

1

AlignTool Data
Thisisused only in response to an AlignTool command. It has the following, in order.

(& A left parenthesis.
(b) either two or five numbers, each followed by a comma.
(c) anumber.
(d) aright parenthesis.

Example 1a: 00001 # (1.000000,0.000000,0.000000)

Example 1b: 00001 # (1.00000, 0.00000, 0.00000, 0.00000, 0.00000, 1.00000)

Property type data

Thisis used in response to either an EnumProp or and EnumAllIProp command. It has the following, in order:
(8 astring giving the name of a property. This must be one of: "Tool", "FoundTool", "GoToPar", "PtMeasPar", " Speed",

"MaxSpeed", "MinSpeed”, "Accel", "MaxAcced", "MinAccel", "Approach”, "Retract", or "Search".

(b) acomma.

(c) astring giving the name of a data type. This must be one of: "Number", "Property”, "String". If item a above is
"Tool", "FoundTool", "GoToPar", or "PtMeasPar", this must be "Property". If item a aboveis "Speed", "MaxSpeed"”,
"MinSpeed”, "Accd", "MaxAccel", "MinAccd", "Approach", "Retract”, or "Search", this must be "Number".

Example 2a: 00001 # " Speed"”, "Number"

Example 2b: 00001 # "Tool","Property"

Coordinate System Type Data

Thisisused only in response to a GetCoordSystem command. It has the following, in order:

(& "CoordSystem" (without the quotes).

(b) aleft parenthesis.

(c) oneof: MachineCsy, MoveableMachineCsy, MultipleArmCsy, PartCsy.
(d) aright parenthesis.

Example 3a: CoordSystem(MachineCsy)

Coordinate System Transformation Data
Thisisused only in response to a GetCsyTransformation command. It has the following, in order:

(8 "GetCsyTransformation" (without the quotes).

(b) aleft parenthesis.

(c) oneof: PartCsy, JogDisplayCsy, JogMoveCsy, SensorCsy, MultipleArmCsy.
(d) six numbers, each preceded by a comma.

(e) aright parenthesis.

Example 4a: 00001 # GetCsyTransformation(PartCsy,1, -2.00,3, 30.0, 45.0,20.0)

Error Information Data

Thisisused only in response to a GetErrorlnfo command. It consists of asingle string. A single GetErrorinfo command may
elicit several responses.

Example 5a: 00001 # "no clue"

22

10.

Error Status Data
Thisisused only in response to a GetErrStatusE command. It consists of the following, in order:

(& "ErrStatus' (without the quotes).

(b) aleft parenthesis.

(c) asinglecharacter that iseither O or 1.
(d) aright parenthesis.

Example 6ac EO001 # ErrStatus(0)

Machine Class Data
Thisisused only in response to a GetMachineClass command. It consists of the following, in order:

(8 "GetMachineClass' (without the quotes).
(b) aleft parenthesis.

(c) thestring"CartCMM" (with the quotes).
(d) aright parenthesis.

Example 7a: 00001 # GetMachineClass("CartCMM")

IsHomed Data
Thisis used response to an IsHomed command or a GetXtdErrStatus command. It consists of the following, in order:

(& "IsHomed" (without the quotes).

(b) aleft parenthesis.

(c) asingle character that is either O or 1.
(d) aright parenthesis.

Example 8a: 00001 # IsHomed(1)

Is User Enabled Data
Thisisused in response to an |sUserEnabled or a GetXtdErrStatus command. It consists of the following, in order:

(@ "IsUserEnabled" (without the quotes).
(b) aleft parenthesis.

(c) asinglecharacter that iseither O or 1.
(d) aright parenthesis.

Example 9a: 00001 # IsUserEnabled(1)

Property data
Thisisused in response to a GetProp, GetPropE, or SetProp command. It consists of the following in order:

(8 thekeyword"Tool" or "FoundTool" (without the quotes).

(b) adot <46>.

(c) thekeyword"PtMeasPar" or "GoToPar" (without the quotes).
(d) adot.

(e) one of the following keywords (without the quotes): "MaxSpeed", "Speed", "MinSpeed", "MaxAccel", "Accel", or
"MinAccel". If the preceding keyword is "PtMeasPar", this may also be "Approach”, "Retract”, or "Search”" (without
the quotes).

(f) aleft parenthesis.

23

(g9 anumber.
(hy aright parenthesis.

Example 10a: 00001 # Tool.PtM easPar.MinA ccel (2.000000)

11. Position data

Thisisused in responseto aGet, PtMeas, or OnMoveReportE command. It consists of oneto three parts separated by commas.
Each part consists of the following, in order:

(@) thecharacter X,Y, or Z.
(b) aleft parenthesis.

(c) anumber.

(d) aright parenthesis.

Each of X, Y, and Z may appear at most once, but they may appear in any order.

Example 11a: 00001 # Y (2.000000), Z(3.000000)
Example 11b: 00001 # X(1.2)
Example 11c: 00001 # X(1.2),Z(3.0), Y(2.0)

7.6.4 Format of response string test files

1. Whatisan I++ DME interface response file?

An |++ DME Interface Response File is afile containing character strings to be stuffed into messages and sent to an I++ DME
Interface client. Each character string represents alegal or illegal response message. The response file al so contains character
string separator sequences and end of file sequences that are not part of the character strings. In this spec "character string"
will be used to refer to the characters that go into the message.

2. Suffix

Response files are identified by a".res" suffix.

3. Communications

It is assumed here that sockets are being used for communications. When sockets are used, the length of the character string
being transmitted is given in the communication, and no terminator (such asaNULL) is used in the character string.

To be suitable for use with some other communications method, this file format may need to be modified.

4. Useof ASCII
All references to ASCII characters in this file spec are given using decimal (not octal or hex) numbers. An ASCII number
enclosed in angle brackets (e.g., <13>) is used to represent ASCII characters.

5. How the Response Fileis Divided

Thefirst character string of aresponse file starts with the first character in the file and ends on the last character before the first
occurrence of two backslashes followed by a carriage return followed by aline feed (i.e., <92><92><13><10>). The second
character string starts with the next character in the file after that and ends on the first character before next occurrence of
<92><92><13><10>, and so on. The <92><92><13><10> sequence is a separator and is not part of any character string.

The backslashes are used so that character strings representing illegal responses with <13><10> inside can be written in the
file and used for testing.

To end thefile, after the <92><92><13><10> following the last character string, there should be the sequence <58><13><10>
<58><13><10>. This has the appearance of two lines each containing only a colon.

Using ASCII for non-printing characters, here isan example (written on two lines) of an entire response file with two character
stringsin it, each representing alegal response:

00001 & <13><10>\ \ <13><10>
00001 %<13><10>\ \ <13><10><58><13><10><58><13><10>

24

Thefirst character string is: 00001 & <13><10>
The second character string is: 00001 %<13><10>

When thisfile is viewed in most file viewers, it has the following appearance:

00001 &
\\
00001 %
\\

Legal Character Strings
A legal character string consists of alegal response string, as defined in 7.6.3, and nothing el se.
A legal response string followed by any other characters before the separator forms an illegal character string.

Comments

Response files contain no comments. Thisisto keep parsing easy. It isintended that a.txt (text) file with the same base hame
accompany each .resfile. The .txt file should explain the .resfile and the corresponding .prg file, if thereis one.

Reading of responsefilesis expected to stop when the two colons ending the file are encountered. Thus, for most responsefile
readers, anything after the colons is effectively a comment. Users who choose to do so can put comments there.

Examples

In these examples, the character string separators are represented as\ \ aone on aline, and it is assumed each line ends with
<13><10>.

(@ All Legal File
Inthisfile, all the character strings represent legal responses.
00001 &
\\
00012 # IsHomed(1)
\\
00015 # Y (2.000000), Z(3.000000)
\\
00015 %
\\

(b) All lllegal Character Strings File
Inthisfile, al the characters strings areillegal.
00001 &
oops
\\
00003 # (1.0, 2.0)
\\
00004 # I suserenabled(1)
\\

25

Thefirst character string has "oops" after the first <13><10> and before the end of the string.
The second character string does not correspond to any valid response format.

The third character string has two lower case |etters where they should be upper casein IsUserEnabled.

8 Using server-side components for facilitating client-side implementations

The server-side components of the test suite are listed and briefly described in Table 2. We will now describe how to use these

components in your implementations of the I++ DME specification.

8.1 Operating the server-side GUI front end

Thefile, serverDIg.cpp, contains codefor the server-side GUI front end and it al so contains much of the"glue” codefor the server-side

utility. Thelocation of serverDIlg.cppis

NI STI ++DIVEt est Sui t el. 1\t est Sui t eConponent s\ ser ver Corponent s\ src\ Server

Sincethe server-side GUI is set up to receive
commands from the client-side, the user needsto
set up and execute the server-side GUI first, (to
execute, just double click the server.exe icon).

;ﬂ;ﬁerver 1.1

Once executing, this GUI will wait indefinitely — |++ Server Lkl

for aconnectionfromtheclient. Server-side GUI
setup involves the following steps (refer to Fig-
ure 6 for a picture of the server-side GUI):

» If you wish to log test result information,
click the"Set Log Fil€" button and provide
afilename. Itissuggested that yousetupa
folder to storethelog filesfor different test
files. Command and error information are
recorded in these log files. Selecting this
option also specifieserror logging for pars-
ing and context checking errors. These er-
rors are more detailed than the | ++ specifi-
cation compliant errorsthat areavailableas
responses. They reveal more detail about
why the command string parsing failed or
why the command had an inappropriate
context. For more detail on server-sidelog
files, see Section 8.2.

e Select the port number for TCP/IP socket
communications. Thisnumber must match
the one chosen on the client-side. The de-
fault port number is 1294, which is the

—Log File-
| SetlogFile I

—Socket Port Mumber -

1294
i:E‘r.rD[- EI:IIjE 17T L.I:Ig"F..n.ﬂfSEf. DEt:EIIIS i
- el
- Stakiz -

Execute]

Gluit |

oneinternationally defined for this type of
connection. Therefore, it should be used
whenever possible. However, other port
numbers may work as long as the client-
side socket uses the same numbers.

» Select the number corresponding to the de-

Figure 6: The server-side GUI front end

sired server-side test case, which currently defaults to O, where 0 means "all correct responses.” Additional server-side test
cases are planned that will generate avariety of illegal responses in order to more fully test client-side implementations.

26

» To execute, click the Execute button. At such point, the Status display would show "Waiting for Connection” until the client
site connects, and, at such point, the server site Status display would show "Client Connected." This information continues
throughout the execution of the entire test file.

 Click the Quit button once the command file has been compl etely executed. Only thisaction would causethelogged information
to be dumped to the log file. The program completion message is displayed in Status display on the client side GUI .
8.2 Server-side utility

The server-side utility is the component consisting of mostly "glue" code that integrates all the other server-side componentsinto a
single executable. The server-side utility executes the socket read of commands, socket write of responses, command string parsing,
command context checking, and command execution (i.e., coarse CMM simulation). The operation of these componentsisillustrated
inFigure 2. It also maintains "world model" data and methodsfiles (world.h and world.cpp) that contain data about the virtual CMM
and about the state of the system (e.g., the context of commands) and methods needed to update and maintain that datain world.cpp.

There are two execution threads in the server-side utility. Each thread represents a cyclically executing piece of code. The
contents of the first thread are as follows:

1. Check the socket for data

2. If thereis datain the socket, the data is parsed and checked for a correctly formed tag and also to ensure that the tag number
isnot currently in use.

3. If thetagislegal, the command string is put in either the fast or slow queue.

4, |If thetagisillegal, an error response is generated (and logged, if that option is selected) and a response string is put in the
response queue.

5. Theresponse queueischecked to seeif it hasresponsesto send back to the client; if it does, then the response queueisemptied,
sending the response strings to the client.

6. The code waits until the end of the sampling period for this thread, then returns to step number 1.

The contents of the second thread are as follows:
1. Check the fast queue for acommand string.
2. If thereis no command string in the fast queue, it checks the slow queue for a command string.

3. If acommand was found from either queue and a multicycle command (that is, AlignTool(), Home(), GoTo(), PtMeas(), or
PtMeasl JK()3) is not currently executing, the parser is called to check the command for validity (i.e., the parser checks for
syntax errors and parameter errors).

4. If amulticycle command is currently executing and there is a command on the fast queue, the parser is called to check the
command for validity.

5. If amulticycle command is currently executing and there is a command on the slow queue, but none on the fast queue, the
gueues are | eft alone and the command is not parsed.

6. If thecommand string is not valid, an error response is generated and a response string is put in the response queue.
7. If the command string is valid, the parser returns a command object (i.e., an instance of the appropriate command class).
8. If AbortE() isreceived and valid, both command queues are cleared.
9. The command object is sent to the context checker.
10. If the command has bad context, an error response is generated and a response string is put in the response queue.

11. If the context of the command is good, the command object is given to the executor.

3actually PtMeasl K () is not available in the server-side utility, sinceit appears to be identical to PtMeas() in the |++ DME spec version 1.1

27

12. The executor is checked for responses, and any responses are sent to the response queue.

13. The code waits until the end of the sampling period for this thread, then returnsto step number 1.

Having two threads of execution allows us to set a unique cycletime (i.e., sampling rate) for the execution of each thread. Typically
we want to have the first thread at a higher sampling rate and the sampling rate of the second thread be no less than the rate of the
first, since thereis no need to check the command queues, if you have not read the socket for anew command since you last checked
the command queuesfor the presence of commands. Currently, thefirst thread has a sampling period of 20 ms and the second thread,
50 ms.

If the logging option is selected in the GUI (see Section 8.1), the log file will include information on commands received and
errors detected. Thelog file has the following general format:

e Timestamp, received command tag number, command string.
» Timestamp, serial number of the command, acknowledgement symbol, &.

» Timestamp, tag number of the command, followed by either only a command completion symbol, or any other additional
information that the I ++ DME specification calls for after the completion of a command.

» Timestamp, tag number of the command, error report for the command.

» If there is an error in the command string (detected by the command parser), both the 1++ error type and a more detailed
description of the error are logged.

» If thereisan error in the command context, a detailed description of that error is logged.

Thelog file may include additional execution status information users have programmed into the server utility. For example, current
tool position, execution state, etc. Thiswill be explained further in Section 8.7 on the executor.

8.3 TCPI/IP socket read and write

Thiscodeisvirtually identical to the socket read/write component in the client-side components as described in Section 7.2.

8.4 Using the command string parser

The command string parser is a separately defined software component with precisely specified interfaces. A stripped-down version
of the parser has been integrated with the overall server-side utility (Section 8.2) and it also exists in a stand-alone version (with a
main()). Developers are encouraged to utilize the stripped-down and stand-alone versions of the command parser in the following
ways,

* Inthe stripped-down version as part of the server-side utility for facilitating client-side implementations

* Inthe stripped-down version for integration into an implementor’s server-side implementation

* Asastand-alone version for I++ command files to test if input commands are parsable.

Descriptions of the format of command stringsisin Section 7.4.1 and command string filesisin Section 7.4 under the heading,
Command test file format.

All files relating to the stripped-down and stand-alone versions of the parser, respectively, described in this section can be found
in
NI STI ++DVEt est Sui t el. 1\ st andAl oneTest Sui t eConponent s\ Par ser CrdPC
NI STI ++DIVEt est Sui t el. 1\t est Sui t eConponent s\ ser ver Conponent s\ Par ser CndUNI X

and all directorieslisted in this section are subdirectories of it. We will describe the command parser for PC only (though one exists
for UNIX targets aswell. The parserCmd.cc file will compile under GNU g++. The parserCmd.cpp file will compileinVisual C++.
The only difference between parserCmd.cc and parserCmd.cpp is that #ifdef PARSER_MAIN and the matching #endif have been
commented out in parserCmd.cpp.

The file, parser.cpp, includes documentation giving the rules for parsing the command strings for each I++ command. The
documentation of the parserCmd class in source/parserCmd.h describes how the parser is intended to be used. The documentation
of main in source/parserCmd.cc describes how main usesit.

A UNIX version of the stand-alone parser exists. The UNIX executable (for SUN systems) is bin/parserCmd. Sample command
filesarein ../I++test_files. Use the executable with acommand like: bin/parserCmd ../I++test_files/all_ok.prg.

28

8.5 CMM and tools related components

In order to further modularize the server-side components, we organized the various variables (and the methods required to maintain
those variables) relating to the CMM system and its environment (world) into a separate set of source code files, world.h, world.cpp,
and tools.h. These files are contained in the directory

NI STI ++DIVEt est Sui t el. 1\t est Sui t eConponent s\ ser ver Component s\ src\ CvMM

The file, world.h, defines data members and methods for a world modeler that keeps track of the state of a system executing
I++ DME commands. The methods in executor.cpp and serverDIg.cpp use many of the methods and data definitionsin world.h and
world.cpp. serverDIg.cpp isthefilefor the server-side GUI front end and contains much of the "glue" code for the server-side utility.

For those | ++ DM E specification server-sideimplementorswho wish tointegrate world.hinto their own server code, we encourage
them to use world.h and world.cpp as a template, i.e., to use some of the constructs, replace some of the constructs, and add new
constructs.

These files contain a substantial amount of code to support coordinate system transformations. However, we expect that many
developersimplementing I++ DME on the server-side will want to keep their proprietary version of world.h, world.cpp, and tools.h.
Nonetheless, world.h, world.cpp, and tools.h are required for operation of the server-side utility.

8.6 Command context checker

The command context checker is a separately defined software component with precisely specified interfaces. The context checker
maintains a record in the world model (world.cpp and world.h) of the previous commands. Using constraints in the specification,
the context checker determines the legality of the current command, given its context.

A stripped-down version of the context checker has been integrated with the overall server-side utility (Section 8.2) and it also
existsin astand-alone version, i.e., with amain(). The main() function uses both the command parser and the checker so that it can
be used with the test files of Section 7.4.2. Developers are encouraged to utilize the stripped-down and stand-alone versions of the
command context checker in the following ways,

* Inthe stripped-down version, as part of the server-side utility, for facilitating testing client-side implementations
* Inthe stripped-down version for integration into an implementor’s server-side implementation
* Inthe stand-alone version for I++ command files to check that commands are parsable.

Descriptions of theformat of command stringsisin Section 7.4.1 and command string filesisin Section 7.4.2 under the heading,
Command test file format.

All files relating to the stripped-down and stand-alone versions of the context checker for the PC, respectively, described in this
section can be found in

NI STI ++DVEt est Sui t el. 1\ st andAl oneTest Sui t eConponent s\ Checker CndPC
NI STI ++DIVEt est Sui t el. 1\t est Sui t eConponent s\ ser ver Conponent s\ Checker CrdUni x

A command context checker exists in both PC and UNIX (SUN systems) formats. The UNIX version of the context checker,
checker.cc, will compile under GNU g++ and is located among the stand-alone components. The PC version of the context checkey,
checker.cpp, will compile in Visual C++ and is located among both the stripped-down and stand-alone components. The only
difference between checker.cc and checker.cpp isthat #ifdef CHECKER_MAIN and the matching #endif have been commented out
in checker.cpp.

Thefile, checker.cpp, defines functionsin the checker class and defines amain function outside the checker class. It also includes
documentation giving the rules for parsing the command strings for each |++ command. Functions named checkXXX (where XXX
is a command name) are used to check each type of command in context. The arguments to each command are assumed to have
passed the checks performed by the parser. The documentation for each of thesefunctions givestherulesthat it isenforcing and gives
one or more references to pages of version 1.1 of the I++ DME specification. If this checker is used without the checks performed
by the parser having been made previously, the checker may crash or give wrong results.

Several semantic checks are made in the context checker that could be made in the parser (because context is not required). For
example, the check that adirection vector is not (0, 0, 0). These are identified in checker.cpp as semantic checks.

The reference pages in checker.cpp reference both text and examples. Text references are given in parentheses. Example
references are given in brackets. Other references are not enclosed. For example: Reference pages: 21 23 (35) [36] 63 means there

29

is relevant text on page 35 and an example on page 36. Reference page 14 is not referenced because the print is too small and page
22 isnot referenced since everything on it appearsidentically elsewhere.

The checker class, defined in checker.h, should make it self-evident how the checker component is intended to be used. The
documentation of main in source/checker.cc describes how main uses the checker class.

The executables for PC and UNIX, respectively, are

NI STI ++DMEt est Sui t el. 1\ st andAl oneTest Sui t eConponent s\ Checker CndPC\ bi n\ checker Cnd. exe
NI STI ++DIVEt est Sui t el. 1\ st andAl oneTest Sui t eConponent s\ Checker CndUni x\ bi n\ checker Cnd

Samplecommand filesfor usewiththe context checker arein../I++test_files. Usetheexecutablewithacommandlike: bin/checker
J++testfiles/all_ok.prg.

8.7 Command executor (CMM simulator)

The command executor is a separate software component with separate source code and clearly defined interfaces. The command
executor isintegrated into the server-side utility. The command executor actsin the following roles:

* Asacoarse CMM simulator
» Asalocusfor generating server-side test cases (generally erroneous responses of various types)

» As aseparate component, so that the executor, of al the components linking into the server-side utility, is the only one that
would need to be replaced by proprietary code in order to develop a server-side implementation. This should be clear from
Figure 2.

8.8 Command and response C++ classes

A common set of command and response classes does not seem to be required by the [++ DME specification, however their use by all
implementors is highly encouraged, in order to achieve ahigh level of system interoperability in the end. Using common command
and status classes in implementations will reduce development and debug time and will streamline the testing and analysis process.

NIST has defined aset of 1++ DME specifi cation compliant command and response classes. Accompanying these classesare C++
files defining various methods for each of these classes. In order to simplify the class structure, the actual command and response
classesare derived classes from command and response base classes, respectively. The primary function of these classesisto provide
a common set of data structures for passing data and generating command and response strings. The role of the command and
response classesisillustrated in Figure 2. Also defined are classes for handling data types and errors defined within the specification.
The data classes contain the necessary logic for formatting the data according to the specification when a command or response
string is being generated. Unified Modelling Language (UML) formatted diagrams can be seen in Figures 7 and 8.

30

] AckResponse

Response

31

Figure 7: UML diagram for |++ response classes

GetCsy TransformationResponse
AlignToolResponse | IsUserEnabledResponse
L GetCoordsystemRespons%
|
IsHomedResponse
CompleteResponse GetErrorInfoResponse
PropertyResponse
EnumPropResponse
GetErrorinfoResponse XY ZResponse
ErrorResponse GetErrStatusResponse
| | GetMachineClassResponse

AlignToolCommand

ChangeT ool Command

GetCoordSystemCommand

EnumPropCommand

| SetCoordSystemCommand

GetCysTransformCommand

EnumAllPropCommand

FindTool Command

Command

GetErrorlnfoCommand

| | SetPropCommand

SetTool Command

GetCommand

| | GetPropCommand

| | GetPropECommand

Figure 8: UML diagram for |++ command classes

GoToCommand

| | SetCysTransformCommand

StopDaemonCommand

OnPtM easReportCommand

PtMeasCommand

32

